skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bilodeau, Simon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ferranti, Francesco; Hedayati, Mehdi K; Fratalocchi, Andrea (Ed.)
  2. Abstract Radio-frequency interference is a growing concern as wireless technology advances, with potentially life-threatening consequences like interference between radar altimeters and 5 G cellular networks. Mobile transceivers mix signals with varying ratios over time, posing challenges for conventional digital signal processing (DSP) due to its high latency. These challenges will worsen as future wireless technologies adopt higher carrier frequencies and data rates. However, conventional DSPs, already on the brink of their clock frequency limit, are expected to offer only marginal speed advancements. This paper introduces a photonic processor to address dynamic interference through blind source separation (BSS). Our system-on-chip processor employs a fully integrated photonic signal pathway in the analogue domain, enabling rapid demixing of received mixtures and recovering the signal-of-interest in under 15 picoseconds. This reduction in latency surpasses electronic counterparts by more than three orders of magnitude. To complement the photonic processor, electronic peripherals based on field-programmable gate array (FPGA) assess the effectiveness of demixing and continuously update demixing weights at a rate of up to 305 Hz. This compact setup features precise dithering weight control, impedance-controlled circuit board and optical fibre packaging, suitable for handheld and mobile scenarios. We experimentally demonstrate the processor’s ability to suppress transmission errors and maintain signal-to-noise ratios in two scenarios, radar altimeters and mobile communications. This work pioneers the real-time adaptability of integrated silicon photonics, enabling online learning and weight adjustments, and showcasing practical operational applications for photonic processing. 
    more » « less
  3. Abstract mmWave devices can broadcast multiple spatially-separated data streams simultaneously in order to increase data transfer rates. Data transfer can, however, be compromised by interference. Photonic blind interference cancellation systems offer a power-efficient means of mitigating interference, but previous demonstrations of such systems have been limited by high latencies and the need for regular calibration. Here, we demonstrate real-time photonic blind interference cancellation using an FPGA-photonic system executing a zero-calibration control algorithm. Our system offers a greater than 200-fold reduction in latency compared to previous work, enabling sub-second cancellation weight identification. We further investigate key trade-offs between system latency, power consumption, and success rate, and we validate sub-Nyquist sampling for blind interference cancellation. We estimate that photonic interference cancellation can reduce the power required for digitization and signal recovery by greater than 74 times compared to the digital electronic alternative. 
    more » « less
  4. Abstract The expansion of telecommunications incurs increasingly severe crosstalk and interference, and a physical layer cognitive method, called blind source separation (BSS), can effectively address these issues. BSS requires minimal prior knowledge to recover signals from their mixtures, agnostic to the carrier frequency, signal format, and channel conditions. However, previous electronic implementations did not fulfil this versatility due to the inherently narrow bandwidth of radio-frequency (RF) components, the high energy consumption of digital signal processors (DSP), and their shared weaknesses of low scalability. Here, we report a photonic BSS approach that inherits the advantages of optical devices and fully fulfils its “blindness” aspect. Using a microring weight bank integrated on a photonic chip, we demonstrate energy-efficient, wavelength-division multiplexing (WDM) scalable BSS across 19.2 GHz processing bandwidth. Our system also has a high (9-bit) resolution for signal demixing thanks to a recently developed dithering control method, resulting in higher signal-to-interference ratios (SIR) even for ill-conditioned mixtures. 
    more » « less
  5. Abstract Neuromorphic photonics has become one of the research forefronts in photonics, with its benefits in low‐latency signal processing and potential in significant energy consumption reduction when compared with digital electronics. With artificial intelligence (AI) computing accelerators in high demand, one of the high‐impact research goals is to build scalable neuromorphic photonic integrated circuits which can accelerate the computing of AI models at high energy efficiency. A complete neuromorphic photonic computing system comprises seven stacks: materials, devices, circuits, microarchitecture, system architecture, algorithms, and applications. Here, we consider microring resonator (MRR)‐based network designs toward building scalable silicon integrated photonic neural networks (PNN), and variations of MRR resonance wavelength from the fabrication process and their impact on PNN scalability. Further, post‐fabrication processing using organic photochromic layers over the silicon platform is shown to be effective for trimming MRR resonance wavelength variation, which can significantly reduce energy consumption from the MRR‐based PNN configuration. Post‐fabrication processing with photochromic materials to compensate for the variation in MRR fabrication will allow a scalable silicon system on a chip without sacrificing today's performance metrics, which will be critical for the commercial viability and volume production of large‐scale silicon photonic circuits. 
    more » « less
  6. Deep neural networks (DNNs) consist of layers of neurons interconnected by synaptic weights. A high bit-precision in weights is generally required to guarantee high accuracy in many applications. Minimizing error accumulation between layers is also essential when building large-scale networks. Recent demonstrations of photonic neural networks are limited in bit-precision due to cross talk and the high sensitivity of optical components (e.g., resonators). Here, we experimentally demonstrate a record-high precision of 9 bits with a dithering control scheme for photonic synapses. We then numerically simulated the impact with increased synaptic precision on a wireless signal classification application. This work could help realize the potential of photonic neural networks for many practical, real-world tasks. 
    more » « less
  7. Broadband analog signal processors utilizing silicon photonics have demonstrated a significant impact in numerous application spaces, offering unprecedented bandwidths, dynamic range, and tunability. In the past decade, microwave photonic techniques have been applied to neuromorphic processing, resulting in the development of novel photonic neural network architectures. Neuromorphic photonic systems can enable machine learning capabilities at extreme bandwidths and speeds. Herein, low‐quality factor microring resonators are implemented to demonstrate broadband optical weighting. In addition, silicon photonic neural network architectures are critically evaluated, simulated, and optimized from a radio‐frequency performance perspective. This analysis highlights the linear front‐end of the photonic neural network, the effects of linear and nonlinear loss within silicon waveguides, and the impact of electrical preamplification. 
    more » « less
  8. Abstract Neuromorphic photonic processors based on resonator weight banks are an emerging candidate technology for enabling modern artificial intelligence (AI) in high speed analog systems. These purpose-built analog devices implement vector multiplications with the physics of resonator devices, offering efficiency, latency, and throughput advantages over equivalent electronic circuits. Along with these advantages, however, often come the difficult challenges of compensation for fabrication variations and environmental disturbances. In this paper, we review sources of variation and disturbances from our experiments, as well as mathematically define quantities that model them. Then, we introduce how the physics of resonators can be exploited to weight and sum multiwavelength signals. Finally, we outline automated design and control methodologies necessary to create practical, manufacturable, and high accuracy/precision resonator weight banks that can withstand operating conditions in the field. This represents a road map for unlocking the potential of resonator weight banks in practical deployment scenarios. 
    more » « less
  9. Dong, P.; Kani, J.; Xie, C.; Casellas, R.; Cole, C.; Li, M. (Ed.)
    Neuromorphic photonics exploit optical device physics for neuron models, and optical interconnects for distributed, parallel, and analog processing for high-bandwidth, low-latency and low switching energy applications in artificial intelligence and neuromorphic computing. 
    more » « less